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ABSTRACT 
 

An in-depth study into behaviour of high voltage transmission poles has been made covering 
their loading, analysis and design aspects.  Due to large displacements produced, the 
secondary effects have to be accounted for in the solution of pole structure.  Therefore, it 
becomes necessary to consider the geometric non-linearity while analysing a pole. 

The development of a new and efficient technique was considered necessary due to 
limitations of available methods of analysis for pole structures.  For this purpose, “tapered 
modelling technique” has been introduced by the authors.  The finite element method, 
considered to be providing exact solution, is based on use of thin shell elements, requires a 
considerably large computer time and memory.  Other available modelling techniques are 
based on frame elements, solutions of which are not found in good agreement with the exact 
solution unless nodes selected are appreciably high in number. 

In this work, the analysis of poles is carried out by tapered model along with one of the 
standard packages based on finite element method.  It is gratifying to note that the results 
obtained from developed tapered model are observed to be having close agreement with 
those of exact method. 
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1. INTRODUCTION 
 

The lattice skeletal towers are being employed for transmission lines almost since the 
beginning of this industry.  During the last two or three decades, the use of steel pole 
structures for this purpose is started and their use is increasing rapidly.  With the growing 
demand, a considerable increase in the number of manufacturers with new configurations of 
poles and towers has occurred.  They are also equipped with new design, fabrication and 
erection techniques of these structures. 

Poles are considered better than towers due to their following advantages: 
1. Poles can be erected on relatively much smaller space.  As a result of this, these are 

cheaper and better compared with those of towers in cities, where limited right of 
way is expensive. 
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2. Corrosion of a certain vital member of a tower or lose of a single bolt may lead to 
failure of whole structure.  On the contrary, local damage to a pole is bridged over 
due to continuum type of structure. 

3. Poles are subjected to lesser wind loads as compared to towers due to smaller 
aerodynamic coefficient, thus economizing their use. 

4. Poles, being a continuum type, offer more resistance to terrorist activities compared 
with those of towers. 

This research work is aimed at bringing together the more pertinent aspects of analytical 
techniques on which steel pole design is carried out and its direct application to high voltage 
power transmission lines.  The recommendations made as a result of this work have been 
developed to relate primarily to high or extra high voltage transmission lines (100 KV and 
above) where reliability and continuity of service must be provided.  As the need for electric 
power increases and available right-of-way becomes more critical in term of cost and space 
particularly in cities, the demand for pole type structures will enhance with passage of time. 

The routine analysis of polygonal masts is carried out by considering the uniformly 
tapered pole as a telescopic mast with abrupt cross-sectional variations (Fig- 1c).  Despite 
the fact that this approach does not represent its true simulation, the professionals rely on 
this technique for convenience in its modelling by employing the prevailing structural 
software.  The cost of over-designing as opposed to the risk of under-designing transmission 
line structures for longitudinal strength has become a serious concern for design engineers. 

A little saving in a single pole structure on the basis of certain design evidence may lead 
to an appreciable reduction in the cost of total project due to the presence of their large 
number in an electric line.  This depicts their importance and necessitates their analysis and 
design on the basis of such techniques, which should give the best possible representation of 
the prototype. 

A limited research work is carried out on the transmission poles/masts.  Task committee 
on steel transmission pole structures, ASCE Structural Division [1], has done a significant 
work on the subject matter.  This report provides a uniform basis for the design and 
fabrication of steel pole structures.  However, load deflection (P–∆) analysis mentioning 
deflection limitation and compression capacity (buckling load) for non-prismatic members 
like tapered and elliptical polygonal poles etc. are not given in this report.  Analysis aspects 
are introduced without reasonable details and are too brief to understand. 

International Electrotechnical Commission (IEC) has also published a report (IEC-826) 
on loading and strength of overhead transmission lines [5 & 6].  Weather related loads and 
some of the special loading used for a pole are primarily based on the provisions of IEC 826 
1991-94 (Swiss, Geneva).  This report applies to overhead lines of nominal voltage above 
45KV. ASCE Committee [2] has produced a report (ASCE Manual-91) on guyed 
transmission structures.  Another publication of ASCE 1993 (ASCE Manual-52) provides a 
guide for design of Steel Transmission Towers that serves as a basis for the design of both 
guyed and self-supporting steel transmission towers [3].  Longitudinal unbalanced loads on 
transmission line structures were considered as given by EPRI (1978) [6]. 

Islam, A. Khan [10] carried out study on transmission towers.  Various approaches to 
assess loads on conductors and structure using different codes of practices are described.  
Comparison of which is made and most appropriate technique for the assessment of wind 
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loading on towers is established for local conditions.  Final year students of Session 1983-87 
at University of Engineering and Technology, Lahore, made a study for their final year 
project on the design of 200 ft. high television lattice tower composed of steel skeletal 
members made of tubular section [11]. 

 

 

Figure 1. Analytical Models for Poles 

 
The routine analysis of polygonal tubular (Fig 1a) mast executed by the designers is 

primitive and crude.  This model has been improved to take care of secondary effects by the 
authors. Usually designers carryout the analysis considering the polygonal pole as a round 
skeletal member (Fig 1b).  To incorporate the effect of taper, mast is modelled as telescopic 
tubular section in which cross section varies abruptly at different levels (Fig 1c).  This 
approach is not realistic and hence needs verification due to non-representation of actual 
structure truly.  Even if discretization is required, it should be done as in (Fig 1d) using shell 
elements in finite element method.  The purpose of present study is: 

 To elaborate the various loading cases/states to which a transmission structure is 
ever subjected in its whole life, e.g. high wind loading, reduced wind loading, 
construction and maintenance, erection and stringing loads, diagonal wind loads, 
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residual static loads and precamber loads. 
 To establish the methodologies for the analysis of the mast that also incorporates the 

second order effects, which are necessary to be considered for such flexible 
structures. 

 Recommendations for the most appropriate mast modelling technique for the future 
analysis and design. 

 
 

2. ANALYSIS BASED ON TAPERED MODEL 
 

Tapered model (Fig 1a) is developed in this paper to take care of secondary effects.  This 
technique was evolved exclusively for tapered round and polygonal poles, however, it is 
equally good for prismatic section by inputting the shaft taper to be zero.  This method is 
simple and convenient for formulation or automation in the form of in-house spreadsheets or 
computer programs having both the options of linear and non-linear analysis.  Provisions for 
the local buckling stability can also be incorporated in this computer program.  The results 
obtained from this method are in better agreement with the exact solution achieved from 
shell analysis employed in standard packages compared with those given by other methods.  
This is particularly true for pole segments having constant thickness.  In case of variable 
thickness, each pole segment of constant thickness is treated separately and their results are 
summed up.  This, however, becomes tedious and hence assumption of average thickness of 
all the segments is made.  This simplifies the analysis but keeping the acceptable level of 
accuracy.  Another advantage of this modelling technique is its in-sensitivity for the number 
of nodes unlike SAP90 and STAAD III models.  Only loaded points, segment junctions and 
support points need to be considered in the analysis.  It is further gratifying to note that the 
Tapered Model leads to conservative results compared with the exact solution. 

The analysis technique is based on the uniformly tapered polygonal tubular mast model 
whose differential equations have been developed along with their solution.  This is the most 
accurate representation of steel pole structure among all other methodologies, with the 
exception of mast analysis based on finite element method.  However, the exact solution 
requires considerably large computer memory, time and efforts. 

 
 

3. DIFFERENTIAL EQUATIONS FOR ELASTIC CURVE OF MAST AND SOLUTION 
 

3.1 Deflection relationships for mast subjected to lateral loads 
Consider a uniformly tapered hollow tubular polygonal or round (Pole) section with top dia 
Dt, base dia Db and dia Dx at any distance x from the base as shown in Fig 2.  It is subjected 
to gravity and lateral loads.  Moment at distance x1 from base due to lateral load P applied at 
distance L is 

 
 M = P (L – x1)  (1) 

 
From the Mohr’s Second Theorem as given by Timoshenko [8], to calculate deflection δx 
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at a certain distance x from base, take the moment of differential area about section at 
distance x1 from base which is: 

 
 M dx1(x–x1) = P(L–x1)(x–x1) dx1 (2) 

 
Now, this differential area is integrated on the span from base to the point where 

deflection is to be determined i.e. 
 

 δx = ( )( )∫ −−
x

dxxxxLP
EI0

111
1  (3) 

where 
 

L′ = total pole length 
L = height above base upto the point of application of P and S 
P = Applied Lateral Load 
S = Applied Compressive Load 
E = Modulus of elasticity (Constt.) 
k = pole taper 

= (Db – Dt)/L′ 
Dx = Dt + (Db – Dt)/L′ × x 

= Dt + k x 
= Db – k x 

Dx1 = Dt + k x1 
Dx1 = Db – k x1 
x = (Dx – Dt)/k 
 
Hence second moment of area expression for above case becomes: 
 
I = Ci Dxl

3t (variable along the pole length)  
 

 = Ci (D + k x1)3 t = Ci(Db – k x1)3 t (4) 
 

Ci = Numerical multiplying factor for MOI expression 
= π/8 for circular hollow tube and 0.411 for Dodecagonal tube. 

Dx = Mean dia across flats (at a point where deflection δx is desired) 
Dx1 = Mean dia across flats at distance x1 from base. 
D1 = Mean dia at the pt. Of application of load P. 
 
Putting all the values in equation (3), we have 
 

 δx = 
tEC

P
i

× I G (5) 

where 
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 At    x = L,  δx = δL    and    Dx = Dt 
 

 δL = ( ) 
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 δx = δL + θL (x – L)    for    L ≤ x ≤ L′ (7) 

 
From above equation, it is evident that for the determination of deflection at point above 

the point of application of load, elastic curve slope at the load point is needed. 
 
From the Mohr’s first theorem, 
 

 θx = ( )∫
=

=

−
xx

x

dxxLP
EI

1

1 0
11

1
 

 = ( )( )∫ −−−
x

b
i

dxkxDxL
tEC

P

0
1

3
11 = 

tEC
P
i

 × IG 

where 
 

 IG = ( )( )∫ −−−
x

b dxkxDxL
0

1
3

11  

 = 







+

−
−








− 222 2

111
2

1

bxbx D
L

D
Lx

kDDk
 (8) 

 
Hence the slope θx becomes 
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At x = L,  θx = θL  and  Dx = Dt considering the constant diameter beyond L distance 
from the base, the above equation becomes 

 

 θL = 







−

btbi DDDktEC
PL 11

2
  =  







 −

tb

tb

bi DD
DD

DktEC
PL

2
  =  

tbi DDtEC
PL

2

2

2
 (10) 

 
Similarly, if the pole is subjected to transverse moment M applied at distance x from 

base, displacement relationships can be established as follows: 
 
From the Mohr’s Second Theorem, 
 

 δx = ( )∫ −
x

dxxxM
EI0

11
1  (11) 

 = 







−








− 22 2

11
2

1

bbxi kD
x

DDktEC
M    for     x ≤ L (12) 

 
At  x = L,  δx = δL  and  Dx = Dt  the above equation becomes 
 

 δL = 







−








− 22

111
2 bbti kD

L
DDktEC

M  (13) 

 
 δx = δL + θL (x – L)  for    L ≤ x ≤ L′ (14) 

 
To find the slope of elastic curve, θ, the given procedure may again the employed. 
 

 θx = ∫
=

=

xx

x

Mdx
EI

1

1 0
1

1
 

 = 







− 22

11
2 bxi DDktEC

M  (15) 

 
At  x = L,  θx = θL  and  Dx = Dt, the above equation becomes 
 

 θL = 







− 22

11
2 bti DDktEC

M  (16) 

 
The deflection and slope relationships discussed above give displacements and slopes 

due to bending caused by lateral loads (force and moment) only.  The vertical loads further 
enhance these deflections due to second order P–∆ effects.  When the deflection due to 
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bending is large and axial load produces bending stresses that cannot be neglected, the 
maximum stress is given by 

 
 f = P/A + (M + Sδ) c/I (17) 

 
where δ is the deflection of the pole.  For axial compression, the moment Sδ should be given 
the same sign as M, and for tension, the opposite sign, but the minimum value of M+Sδ is 
zero.  The deflection δ for axial compression and bending can be obtained by applying the 
basic moment curvature relationship. 

 
 M = EI d2 y/dx2 (18) 

 
and using M+Sδ in place of M [8&9].  It, however, may be closely approximated by 

 

 δ =
α

δ
−1

o  in which   α = 
EP

S
 (19) 

 
where 
 δo  = deflection for the lateral loading alone (δx or δL – derived earlier) 

PE = Euler Critical buckling load for tapered pole considering elastic behaviour of the 
material. 

To calculate the critical buckling compression capacity of tubular tapered members or 
any other non-prismatic member with variation of cross-section under a certain geometrical 
rule (e.g. hyperbolic variation etc.), the following approach can be employed. 

A column of variable cross section, symmetrical with respect to the centre-line and 
having two axial planes of symmetry, is shown in Fig 3.  The middle portion is of uniform 
cross section with its smaller moment of inertia equal to Io.  At the ends the cross section 
varies, and the smaller moments of inertia follow the expression below. 

 
 I = Io (x/a)m (20) 

 
For  x = b,  I = Io(b/a)m 
For  x = a,  I = Io 
 
In above equation, x and a are distances from a fixed point and m is a number depending 

upon the type of column.  When the middle portion is a solid cylinder and the ends are solid 
cones, I varies as the fourth power of x and m = 4 in the equation.  When the column has a 
constant thickness in the direction perpendicular to the plane of section, the moments of 
inertia I with respect to axes parallel to the plane of the figure are proportional to x and  
m=1 in equation.  (When the column consists of four angles connected by lattices of 
pyramidal shape, the cross-sectional area remains constant, and I can be taken proportional 
to x2, so that m = 2 in the equation).  Calculations made for m = 1, 2, 3, 4, show that the 
critical load as given by Timoshenko & Gere [9] within the elastic limit can be represented 
by the following expression: 
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 PE = α ( ) 2lk
IE o  (21) 

 
in which α is a numerical factor depending upon the ratios h/l and II/Io, where II = Io (b/a)m is 
the moment of inertia of the end cross-section.  The magnitudes of α for various ratios are 
given in a table [7].  It can be seen from the table that as the ratio h/L or the ratio II/Io 
approaches unity the factor α approaches π2 and the load value approaches the value for a 
prismatic bar. 

Some Publications especially ASCE-72 [1] use another numerical factor that is basically 
derived from the α-factor (described above) called taper coefficient, which is denoted by P*. 

For a uniformly tapered tubular pole as shown in the Fig 4, 
 

 
Figure 4. Uniformly Tapered Tubular Pole 

 
Io = Ib  (at pole base level), 
II = It (at pole top level) 
 
The equation I = Io (x/a)m gives: 
 
It/Ib = (b/a)m 
Ib/It = (a/b)m 
Ib = It (a/b)m 
 

where m = log (Ib/It)/log(a/b) 
 
Usually m ranges between 3 and 4 for steel polygonal tubular structures. 
For geometry of Fig 4,  a/b  =  Db/Dt 
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 ∴ m = log(Ib/It)/log(Db/Dt) (22) 
 
 and    Ib = It(Db/Dt)m (23) 

 
So for tapered pole Euler Buckling load becomes 
 

 PE = ( )2lK
IE bα

 

 = 
( )2lK

D
DIE

m

t

b
t 





α

 (24) 

 
Comparing it with the general Euler formula for an equivalent prismatic member of same 

dimensions as of pole top that is multiplied by a coefficient P* to make it equal to PE for 
tapered pole i.e. 

 PE = P*
( )2

2

lK
IE tπ

 (25) 

 
Where It is the moment of inertia at the top of the pole (based on Dt) 
 

 ∴ P* = 
m

t

b
D

D







2π
α

 (26) 

 
Hence, Euler buckling load for tapered pole section is: 

 
 PE = P* × PE,top (27) 

 

where PE,top = 
( )2

2

lK
IE tπ

 

 
If the thickness of steel pole segments is not uniform and varies abruptly from segment to 

segment and this abrupt variation is not according to certain mathematical rule, formulation 
of variable thickness expression is quite difficult.  A convenient solution for this problem is 
to assume average thickness for all pole segments. This assumption is sufficiently close to 
the prototype and further its results are confirmed from ASCE-72 (1978) [2]. 

 
 

4. RESULTS 
 

This section presents a design example that demonstrates the application and use of mast 
analysis principles, tapered modelling approach and its most of the formulae recommended. 
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 The results are compared with the load and stress analysis output by standard computer 
programs and packages employed.  A 220 KV Double Circuit Tangent Pole has been taken 
for the study.  Two-dimensional front view of this pole along with selected dimensions is 
shown in Fig 5.  The technical data to be considered for the design of selected steel tubular 
pole is as under:- 
 

 

Figure 5. Dimensions of The Selected 220 KV Twin Bundle Tangent Pole 

 

Pole Characteristics Dimensions 

1) Deflection angle 0 – 2 deg. 

2) Ruling span 180 m 

3) Wind span 200 m 

4) Maximum weight span 250 m 
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5. CONDUCTOR 
 

ACSR “RAIL”, 45/7 strands, Tensile Strength (TS) of 11874 kg., twin bundled per phase. 
 

5.1 Shieldwire (OPGW) 
Aluminium Clad Steel (Equivalent to 7/8 AWG with 30% Conductivity) with OPGW 
construction.  70mm2 cross-section, 11.4 mm diameter, 8000 kg strength and unit weight of 
0.45 kg/m. 

 
5.2 Safety Factors 
1) Erection, Stringing and Maintenance Loads = 1.5 
2) Pole Dead Weight = 1.2 

 

Table 1. Results Obtained From Primary (First Order) Analysis (Primary Analysis Results are 
same for all modelling approaches) Critical Load Case # 1 

Node
No.* 

Vertical 
Distance 
(m) from 
bot to top 

Axial 
Force 
ΣPx 
ton 

Transfer 
Shear 
ΣPy 
ton 

Longi. 
Shear
ΣPz 

ton-m

Resultant 
Shear 
ΣPyz 

Trans. 
Moment
ΣMz 

ton-m 

Longi. 
Moment
ΣMy 

ton-m 

Resultant 
Moment 
ΣMyZ 
ton-m 

Torsion
ΣMx 

ton-m 

1 32.250 0.120 0.402 0.000 − 0.000 0.000 0.000 0.000 

2 28.050 1.976 5.612 0.000 − 1.688 0.000 1.688 0.000 

3 25.582 2.806 6.862 0.000 − 15.541 0.000 15.541 0.000 

4 22.800 4.662 12.072 0.000 − 34.628 0.000 34.628 0.000 

5 20.750 4.662 12.072 0.000 − 59.376 0.000 59.376 0.000 

5 20.750 4.662 12.072 0.000 − 59.376 0.000 59.376 0.000 

6 17.550 6.518 17.282 0.000 − 98.006 0.000 98.006 0.000 

7 15.065 8.866 19.165 0.000 − 140.950 0.000 140.950 0.000 

8 10.200 8.866 19.165 0.000 − 234.190 0.000 234.190 0.000 

8 10.200 8.866 19.165 0.000 − 234.190 0.000 234.190 0.000 

9 7.833 12.556 21.303 0.000 − 337.056 0.000 337.056 0.000 

10 0.000 12.556 21.303 0.000 − 440.006 0.000 440.006 0.000 

* The node numbers and their locations are shown in Figure 5. 
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6. POLE DESIGN LOADS 
 

Wind velocity   = 150 km/hr. 
Wind load on conductor, shield wire and pole are to be calculated in accordance with 

IEC-826 [5]. 
 

6.1 Load Cases Considered 
Four load cases were considered for the analysis of the pole.  Case 1 (Load Condition # 1) 
represents transverse wind, with all wires intact.  In Case 2 (Load Condition #2), diagonal 
wind at 45° is considered with all wires intact.  Longitudinal load due to wind on conductor 
and shield wire is taken equal to 30% of the transverse wind condition.  Case 3 is a model of 
the stringing conditions.  The stringing tension is considered to be 10% of tensile strength of 
conductor and shield wire.  This case is further divided into four load conditions as under: 
 

Table 2. Results of Uniformly Tapered Polygonal Tubular Model Considering Second Order 
Effects (Non-Linear Analysis) Under Critical Load Case #1 

Node 
No. 

Ht 
from 
base 

m 

Axial 
Force
ΣPx 
ton 

Trans. 
Shear 
ΣPy 
Ton 

Longi. 
Shear
ΣPz 
ton 

Resultant 
Shear 
ΣPyz 
ton 

Trans. 
Moment

Mz 
ton-m 

Longi. 
Moment

My 
ton-m 

Resultant 
Moment* 

MyZ 
ton-m 

Torsion
Mx 

ton-m 

1 32.250 0.12 0.40 0.00 0.40 0.000 0.000 0.000 0.000 

2 28.050 1.98 5.61 0.00 5.61 1.756 0.000 1.756 0.000 

3 25.582 2.81 6.86 0.00 6.86 16.242 0.000 16.242 0.000 

4 22.800 4.66 12.07 0.00 12.07 36.269 0.000 36.269 0.000 

5 20.750 4.66 12.07 0.00 12.07 62.060 0.000 62.060 0.000 

5 20.750 4.66 12.07 0.00 12.07 62.060 0.000 62.060 0.000 

6 17.550 6.52 17.28 0.00 17.28 102.108 0.000 102.108 0.000 

7 15.065 8.87 19.17 0.00 19.17 146.340 0.000 146.340 0.000 

8 10.200 8.87 19.17 0.00 19.17 242.136 0.000 242.136 0.000 

8 10.200 8.87 19.17 0.00 19.17 242.136 0.000 242.136 0.000 

9 4.833 12.56 21.30 0.00 21.30 346.563 0.000 346.563 0.000 

10 0.000 12.56 21.30 0.00 21.30 450.111 0.000 450.111 0.000 

* Resultant Moment Myz = 2
zM2

yM +  
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a) Shield wire-stringing condition with 6 phases intact.  Only longitudinal load 
without wind (Load Condition # 3), 

b) Shield wire stringing only with no wind (Load Condition # 4),  
c) Shield wire intact, 5 phases intact and any one phase in stringing condition, with no 

wind (Load Condition # 5), 
d) Stringing of shield wire along with stringing of any one phase (Load Condition # 6). 
 
Case 4 (Load Condition # 7) is a broken wire condition showing any phase and shield 

wire broken with 5 phases intact.  Maximum tension in conductor is taken equal to 50% of 
every day tension. 

Summary of the results for different load cases including critical load case #1 are given in 
tabular form as under: 

 
EW  = Earth wire 
Top X = Top cross arm 
Top X-L = Top left cross arm 
Top X-R = Top right cross arm 
Mid X = Middle cross arm, Mid X-L & Mid X-R 
Bot X  = Bottom cross arm, Bot X-L & Bod X-R 
MS Start = Middle segment start 
BS Start = Bottom segment start 
 

Table 3. Base Reactions For All Load Cases For Uniformly Tapered Polygonal  
Tubular Mast Model 

Axial 
Force Shear Force (kg) Bending Moment (kg-m) Torsion 

Sr. 
No. 

Load 
Case # 

P(kg) ST SL SR MT ML MR 
Tor.  

(kg-m) 

Remarks 

1 Case 1 12556 21303 0 21303 450087 0 450087 0 A.C 

2 Case 2 12556 12179 14107 18637 25039 297884 388974 0  

3 Case 3a 15400 0 1200 1200 0 40460 40460 0 B 

4 Case 3b 7048 0 1200 1200 0 39043 39043 0  

5 Case 3c 15400 0 3351 3351 0 97804 97804 13293 B 

6 Case 3d 8440 0 4551 4551 0 134901 134901 13293  

7 Case 4 12109 0 2172 2172 0 64545 64545 6712  

Note: Axial force is downward and includes the wt of the portion above ground for the pole shaft times the 
appropriate load factor, in addition to the concentrated vertical loading. 
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Key to the special remark 
A Indicates load case with Max. Resultant Over-turning Moment. 
B Indicates load case with Max Axial Force. 
C Indicated load case with Max Resultant Shear. 
Hence, Load Case #1 is critical for Anchor Bolts & Base Plate as it leads to Max.  Res. 

Shear & Overturning Moment 
 

Table 4. Comparison Of Total Resultant Moment (Primary & Secondary) Myz Under Critical 
Load Case # 1 

Node 
No. Location 

Ht 
above base 

m 

Tapered 
Model 
ton-m 

SAP 90 
Frame El. 

ton-m 

STAAD III 
Frame El. 

ton-m 
1 EW 32.250 0.000 0.000 0.000 
2 Top X 28.050 1.756 1.750 1.750 
3 Atc1+WTS 25.582 16.242 16.160 16.160 
4 Mid X 22.800 36.269 36.040 36.030 
5 TS End 20.750 62.060 61.620 61.630 
5 MS Start 20.750 62.060 61.620 61.630 
6 Bot X 17.550 102.108 101.380 101.390 
7 Atc2+WBS 15.065 146.340 145.260 145.260 
8 MS End 10.200 242.136 240.630 240.620 
8 BS Start 10.200 242.136 240.630 240.620 
9 Atc3+WBS 4.833 346.563 344.780 344.780 

10 Base 0.000 450.111 448.180 448.170 
Notes: Axial & Shear forces being identical are not shown in comparison. 

 

Table 5. Comparison Of Resultant Second Order Moments For All Models  
Under Critical Load Case # 1 

Node 
No. Location 

Ht 
above base 

m 

Tapered 
Model 
ton-m 

SAP 90 
Frame El. 

ton-m 

STAAD III 
Frame El. 

ton-m 
1 EW 32.250 0.000 0.000 0.000 
2 Top X 28.050 0.068 0.060 0.060 
3 Atc1+WTS 25.582 0.701 0.610 0.610 
4 Mid X 22.800 1.640 1.410 1.400 
5 TS End 20.750 2.684 2.250 2.260 
5 MS Start 20.750 2.684 2.250 2.260 
6 Bot X 17.550 4.102 3.380 3.380 
7 Atc2+WBS 15.065 5.390 4.400 4.400 
8 MS End 10.200 7.946 6.430 6.420 
8 BS Start 10.200 7.946 6.430 6.420 
9 Atc3+WBS 4.833 9.507 7.670 7.670 

10 Base 0.000 10.104 8.170 8.160 
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Table 6. Comparison Of Resultant Lateral Deflections δYz For All Models Critical  

Load Case # 1 




 δ+δ=δ 2

z
2
yyz  

Node 
No. Location 

Ht 
above base 

m 

Tapered 
Model 

(m) 

SAP 90 
Frame El. 

(m) 

STAAD III 
Frame El. 

(m) 

1 EW 32.250 2.456 2.104 2.103 

2 Top X 28.050 1.893 1.593 1.592 

3 Atc1+WTS 25.582 1.572 1.309 1.304 

4 Mid X 22.800 1.238 1.013 1.013 

5 TS End 20.750 1.014 0.826 0.826 

5 MS Start 20.750 1.014 0.826 0.826 

6 Bot X 17.550 0.709 0.578 0.277 

7 Atc2+WBS 15.065 0.512 0.418 0.418 

8 MS End 10.200 0.224 0.183 0.183 

8 BS Start 10.200 0.224 0.183 0.183 

9 Atc3+WBS 4.833 0.048 0.040 0.040 

10 Base 0.000 0.000 0.000 0.000 

 

Table 7. Summary of Design Based on the Analysis 

Segment 
Lengt

h 
m 

Lapped 
Length 

Ht. Of 
Seg. 
bot. 

Bot 
join
t # 

Top 
dia 
Cm 

Bot.dia
cm 

Thick
cm 

K 
m/m 

Connect. 
between 

Joint 
type 

Overlap 
provided 

Theoretica
l 

Length  
(m) 

TS 11.50 11.50 20.75 5 20.000 56.800 0.635 0.03200 TS-MS SLIP 0 0 

MS 11.50 10.55 10.20 8 55.530 89.290 0.953 0.03200 MS-BS SLIP 0.95 0.87 

BS 11.65 10.20 0.00 10 87.384 120.000 1.032 0.03198 BS-B.PL WEL
D 1.45 1.36 

  32.25  Average thickness = 0.873 cm     

TS = Top Segment. MS = Middle Segment BS = Bottom Segment 
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Table 8. Stress Analysis Of Pole Shaft Obtained from the Analysis using Tapered Model 

fA=Px/A For a=0 For a=15deg For a=45deg For a=75deg For a=90 fb fa +fb
fvy- 

direct 
fvz- 

direct 
fy - 
tor. 

Combined 
(kg/cm2) 

Add. 
FOS= 

N
ode N

o. 

L
ocation 

Ht 
m 

Kg/cm2 fby=MzCy/l fby=MzCy/l fbz=MyCz/l fby=MzCy/l fbz=MyCz/l fby=MzCy/l fbz=MyCz/l fbz=MyCz/l kg/cm2 kg/cm2 kg/cm2 kg/cm2 kg/cm2 Fact Fallow Fallow= Fact 

1 EW 32.250 3.03 0 0 0 0 0 0 0 0 0 3 20.63 0.00 0.00 3 4570 1508 

2 Top X 28.050 29.46 330 319 0 233 0 85 0 0 330 359 169.99 0.00 0.00 359 4570 12.72 

3 Atc1+WTS 25.582 33.71 1975 1907 0 1396 0 511 0 0 1975 2008 167.52 0.00 0.00 2008 4570 2.28 

4 Mid X 22.800 45.96 2961 2860 0 2094 0 766 0 0 2961 3007 241.83 0.00 0.00 3007 4570 1.52 

5 TS End 20.750 40.59 3946 3812 0 2790 0 1021 0 0 3946 3987 213.58 0.00 0.00 3987 4570 1.15 

5 MS Start 20.750 27.84 2802 2706 0 1981 0 725 0 0 2802 2829 146.45 0.00 0.00 2829 4570 1.62 

6 Bot X 17.550 32.77 3259 3148 0 2305 0 844 0 0 3259 3292 176.54 0.00 0.00 3292 4570 1.39 

7 Atc2+WBS 15.065 39.71 3700 3574 0 2616 0 958 0 0 3700 3740 174.38 0.00 0.00 3740 4570 1.22 

8 MS End 10.200 32.71 4145 4004 0 2931 0 1073 0 0 4145 4178 143.65 0.00 0.00 4178 4570 1.09 

8 BS Start 10.200 30.90 4010 3874 0 2836 0 1038 0 0 4010 4041 135.70 0.00 0.00 4041 4570 1.13 

9 Atc3+WBS 4.833 36.50 3986 3851 0 2819 0 1032 0 0 3986 4023 125.83 0.00 0.00 4023 4570 1.14 

10 Base 0.000 31.76 3915 3781 0 2768 0 1013 0 0 3915 3947 109.49 0.00 0.00 3947 4570 1.16 

FOS available for worst case =  1.09 > 1.0 OK 
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Table 1 gives the results of primary (first order) analysis of the mast.  Since effect of 
deflections in increasing the moments is ignored in the first order analysis, the results are 
same for all the models.  For brevity, results obtained from analysis for critical loading case 
(case # 1) are only reproduced.  The shear, moments and axial forces shown are at the 10 
nodal points selected on the main pole body at locations mentioned in this table. 

Table 2 shows the results of secondary (geometrically non-linear) analysis of tapered 
mast model for the critical load case.  The shear and axial forces are same as in Table 1 (first 
order analysis) but the moments are increased due to P-∆ effects.  Since critical loading case 
is transverse wind only, longitudinal shears i.e. ΣPz are zero and consequently longitudinal 
moments ΣMy are also zero.  Since there is no unbalanced longitudinal load on cross-arms 
for this load case, applied torque (ΣMx) is also zero.  The rate of increase in moment due to 
second order effect varies along the pole height.  There is an increase of 2.3% in primary 
moment due to P-∆ effects at the base of pole. 

Table 3 gives the summary of support reactions at base of pole for all the seven loading 
cases computed using the Tapered model.  These reactions are to be used in the design of 
base plate, anchor bolts, stiffeners (if any) for base plate, and the concrete foundation.  Some 
of the loading cases give maximum axial load and others maximum shear force, maximum 
bending moment, or maximum twisting moment (torsion).  This has been shown by the 
remarks in the table. 

Table 4 depicts the relative accuracy and precision of results achieved from various 
analytical models.  This gives a glance at the non-linear lateral resultant moments, at 
different levels of pole, for all the models for the critical loading case (load condition # 1).  
At each level, there is a slight difference in values of various models, which is due to the 
assumptions employed in the development of each model.  The moments for the Tapered 
Mast Model has a close match with the finite element models prepared for the comparison 
and verification purpose.  Thus, this close agreement authenticates the accuracy of the 
proposed model. 

The P-∆ effects (second order moment) computed using the three models for the critical 
load case are given in Table 5..  Since, the SAP-90 Model and STAAD III Models are based 
on the same reference diagram (Telescopic/Stepped model, Fig-1c), their solutions are 
almost the same.  Tapered Model results are close to the FEM results.  Comparison cannot 
be made directly with the Shell Element Model results, as its output is not of the form of that 
of skeletal model.  One has to take mean of the respective moments of the shell elements 
meeting at a node.  The axial pole deflections are too small (negligible) and are not 
compared. 

Table 6 gives the resultant lateral deflections of all models including shell element model 
for the critical load case.  The deflection varies from a maximum value of 2.456m for 
tapered mast model to a minimum of 2.080m for Shell Element model.  This is a large 
deflection and confirms the recommendation for the steel pole to be treated as a flexible 
structure.  Since, the example structure is tangent type, the lateral deflections are produced 
by the transverse wind only (contribution to transverse load due to a deflection angle of 2 
deg is negligible).  This deflection is momentary and pole raking or cambering is not 
needed.  The most accurate and exact model amongst all is the shell element model. SAP-
90: Frame Model and STAAD-III: Frame Model results are sufficiently close to the shell 
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element model and thus provide a good alternate solution to shell element modelling.  The 
proposed Tapered Model gives a little bit more deflection due to the assumption of uniform 
thickness of all pole segments in the analysis of example pole.  If the Tapered Model 
formulae are individually applied to each segment, then the deflections will perhaps be more 
close to that of Shell Model.  This is because Tapered Model gives more true representation 
of the prototype than stepped model. 

The dimensions of pole components (design summary) that satisfy all types of applied 
loading without overstressing its any part are recorded in Table 7.  Various specifications 
recommend different amount of lap for splice joint.  Here it has been taken equal to 1.5 
times the largest diameter of female end.  The provided lap is more than the specified one.  
The diameters shown in the table are outer across-flats.  The number of segments have been 
kept as minimum as possible to avoid the wastage of material of lap splices.  The connection 
between all the segments is through splice joint, however, pole and base plate are connected 
through welding. 

Table 8 gives an overview of pole shaft stresses induced at its various levels due to 
internal stress resultants (obtained from non-linear analysis of Tapered Model) for critical 
load case.  Allowable stresses for axial, flexure, shear torsion and their combination have 
been taken from design specifications.  Because of the superior torsional stiffness of closed 
tubular section, allowable stresses are not reduced for lateral torsional buckling.  However, 
local buckling criteria have been used to avoid any local instability due to large flat 
width/thickness ratio.  Polygon corners (located at angles of 15, 45 & 75 deg etc.) might be 
critical for combination of bi-axial moments, axial load, torsion etc., therefore, all these are 
checked.  Since in the load case considered only transverse moment is present, maximum 
bending stress is found at angle of zero degree (i.e. a=0).  Additional FOS (i.e. FOS in 
addition to the specified factor of safety) varies along the pole height.  The most critical 
point is the end of middle section (junction of middle and bottom section) as it has minimum 
FOS of 1.09.  It is notable that despite both segments are subject to same loading at their 
junction, BS (bottom segment) has more FOS (i.e. 1.13) even though it has lesser diameter 
at the junction than the diameter of MS (female end).  This is due to increased thickness of 
BS from 9.53mm to 10.32mm that increases the stiffness (cross-sectional properties) 
increasing in turn the additional FOS. 

 
 

7. CONCLUSIONS 
 

The study of steel transmission pole is carried out using tapered model along with SAP 90 
and STAAD-III models.  The following important conclusions are drawn from this work: 

• In steel pole structures, the maximum allowable stress on the pole is related to the 
width to thickness ratio for structures with polygonal cross-sections and by diameter 
to thickness ratios for structures with circular cross-sections. 

• Limiting the defection to one or one half percent (1 or ½%) of the structure height 
under construction loading can eliminate the need for back guying structures during 
construction.  For appearance, limiting deflections to five or ten percent (5 or 10%) of 
the structure height under maximum loading can keep a pole in a position, which 
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seems to an observer almost straight.  Another technique that is used to keep steel pole 
structure appearance aesthetically pleasing is to camber or rake the structures before 
erection.  Cambering or raking makes the structure initially deformed so that when 
load is applied to the structure, it tends to become straight or appears less deformed. 

• The package programs have limitations: SAP90 can only perform analysis and there is 
no provision for design.  STAAD-III has no general database for design of polygonal 
tubular tapered structures.  The subject structure is non-prismatic and, while designing 
it as a skeletal member, regular variation of cross-sectional properties cannot be 
incorporated in these softwares.  Therefore, designers model it as a telescopic Tubular 
polygonal mast having regular cross-section that abruptly changes at intervals. 

• The shell element and uniformly tapered model are the best representation of the 
prototype.  Therefore, for mast analysis and design either by a software/method truly 
representing the prototype should be used or as an alternate of SAP90 and STAAD-III 
frame element models may be employed with substantial number of nodes, giving 
stepping at each node, to achieve their close coherence with the prototype.  Moreover, 
one has to be cautious regarding the local or overall stability while using these 
softwares, as they are incapable to check this for non-prismatic structures. 

• Stiffness of the structure is reduced by almost 10% when it is designed as a skeletal 
structure ignoring the effect of continuum, however, skeletal simulation for analysis 
purpose is accepted being handy, simple and on conservative side.  STAAD-III has in-
built option for non-linear and P-∆ analysis, whereas SAP90 may conduct the linear 
analysis only.  Therefore, for the subject pole, 2nd order analysis on SAP90 was done 
using the deflected geometry of the structure. 

• Sometimes, client restricts the base diameter due to space or other constraints that 
indirectly limit the amount of taper.  In such a case, the design output is only the wall 
thickness of pole segments that is adjusted to satisfy all the design criteria. 

• Poles, being flexible structures, are subjected to considerably large deflections e.g. 2 
to 4m.  The major contribution in these deflections is from lateral loads, which are 
further increased by vertical loads due to P-∆ effects.  For the tangent poles, this large 
deflection will be infrequent and occasional in its entire life span (i.e. when it is 
subjected to worst possible high wind/lateral loading).  Hence, these large deflections 
need not to be controlled.  For angle poles, however, lateral loads are not casual which 
cause permanent large lateral deflections.  There are various ways to deal with the 
problem of these large deflections.  Pre-cambering and adjustment of the anchor bolts 
by setting base plates of poles in inclined position opposite to the likely displaced 
form of pole are two common techniques. 

• Most of the poles consist of 3 to 4 segments.  A single pole segment usually has an 
economical and optimal length of 12m.  The minimum thickness of material used for 
poles is usually 6mm. 

• Design of the polygonal mast considering it a round tube is not realistic.  ASCE-72 [1] 
gives entirely different criterion for elastic stability of round, hexdecagonal, 
dodecagonal and octagonal or fewer-sided tubes. 

• The overturning moments of transmission poles are usually too high in comparison to 
vertical loads.  The resultant force fall considerably far from the pole centre.  A 
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shallow foundation, therefore, is not usually designed for poles due to avoid 
overturning. 

• Torsional shear stress calculations for the pole are done using membrane analogy by 
some designers and as a regular hollow shaft by the others.  The latter is supported by 
ASCE [1]. 

• While modelling the pole as shell element, membrane action has been found dominant 
and plate bending stress resultants are too small and may be neglected.  Hence, pole 
can be modelled as membrane elements without loss of much accuracy with the added 
advantage of lesser computer memory and time requirements. 

• In case of tubular tapered pole, moment of inertia varies along the member length.  To 
calculate the Euler buckling load, PE, for such members or any other non-prismatic 
member with varying cross-section under a certain geometrical rule (e.g. hyperbolic 
variation etc.), a Taper Coefficient has been derived in this paper.  This coefficient 
involves a factor α to be obtained from Roark et al. [7].  In Tapered Model, Lateral 
deflections are magnified for vertical loads by an empirical factor 1/(1 – P/PE).  This 
coefficient is the key part of this model. 

• Using Mohr’s theorems, 2nd order non-homogeneous differential equations have been 
developed and solved.  Numerical integration can also be employed using Rung Kutta 
method. 

• Deflections for Shell model are least due to loss of stiffness by 1/(1 – ν2) (=10% for ν 
≈ 0.3) in skeletal models.  Flexural rigidity for frame element is EI=Et3/12 and 
EI=Et3/12(1 – ν2) for plate element. 

• The efficacy of the developed analytical technique i.e. tapered model is evident from 
close agreement of results obtained from this method and those achieved from the 
exact method based on finite element method using a standard package.  Further, the 
developed model is simple to use even with hand calculations conveniently or by 
employing MS Excel spreadsheet on a personal computer. 
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